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The following equations are derived for amount of drug in the body
(Xpss)» volume of distribution (v,,), and mean residence time in the
body (;b) at steady state during a continuous constant rate infusion
of drug.
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where c¢(f) = drug concentration in the systemic circulation at time
t following the start of a constant-rate infusion, c,, = steady-state
systemic drug concentration, and R = infusion rate. The equations
are based on the assumption that the rate of drug elimination is
proportional to the systemic drug concentration. The equations pro-
vide the basis for simple methods that are presented for estimating
Xpsss Vsss and ;b directly from experimental data. More general rela-
tionships are also derived for cases where the continuous infusion is

preceded by other modes of administration, ¢.g., a bolus loading
dose followed by a constant-rate infusion.
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INTRODUCTION

Methods for the estimation of the mean residence time
1, and steady-state volume of distribution v of a drug in the
body have been developed for application to systemic drug
concentration data resulting from most modes of drug ad-
ministration including intravascular bolus, truncated con-
stant-rate intravascular infusion, and extravascular adminis-
tration (1-4). Less satisfactory methods are available for the
case where drug is administered continuously for an indefi-
nite time at a constant rate, €.g., a constant-rate i.v. infu-
sion. Siegel (5) described a method for estimating 7, and v
using urinary excretion data resulting from such an infusion.
Equations for v, applicable to systemic drug concentration
data have been presented by Riegelman et al. (6) and Kowar-
ski and Kowarski (7). However, both approaches are based
on the assumption that steady state is achieved in a finite
period of time, and their application requires that the infu-
sion be continued until steady state is achieved. The equa-
tion of Riegelman et al. further requires that the infusion be
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stopped at steady state and that the concentration time
course be observed during the postinfusion period. Another
approach to this problem would be to reconstruct the bolus
response from infusion data and then use existing methods
for estimating v and 7, from bolus data. Such a method can
readily be constructed based on linear system analysis.?
However, a method that can be applied more directly to the
infusion data may offer some advantages with respect to
simplicity and convenience.

The objectives of this article are rigorously to derive
equations for v, and 7, in terms of the systemic drug con-
centration time course resulting from a continuous constant-
rate infusion, to develop methods for the estimation of v,
and #, based on those equations, and to extend the equations
to the more general case where the constant rate infusion is
preceded by other modes of administration. The resulting
equations and methods do not assume that steady state is
achieved in a finite period of time and do not require mea-
surement of postinfusion drug concentrations.

THEORY

The derivations presented here are based on the follow-

ing assumptions:
1. It is assumed that the total rate of drug elimination is
proportional to the systemic drug concentration, i.e.,

= CLc 1)

where CL is a constant (the prime indicates differen-
tiation).

2. Itis assumed that the pharmacokinetic system is time
invariant, at least to the extent that a constant-rate
input will eventually result in a constant steady-state
systemic drug concentration ¢, and a constant
steady-state amount of drug in the body x,..

Case 1: Continuous Constant-Rate Infusion

In the case of a simple constant-rate infusion where R =
infusion rate, mass balance dictates that x;, = R — x.. Sub-
stituting Eq. (1) and the relationship CL. = R/c,, (which
follows from assumptions 1 and 2 and the fact that the rate of
elimination equals the input rate at steady state) into that
relationship,

_ C
Css(CSS_C)_R l—c_ss 3]

Integrating yields an equation for the amount of drug in the
body,

xp(f) = _f [ess — c(t)]dt = Rf [ C(t)] 3

2 For a time-invariant linear system, the unit impulse (bolus) re-
sponse c¢; may be estimated according to ¢; = ¢’/R, where ¢’ is the
derivative of the systemic drug concentration time course resulting
from a constant-rate infusion (rate = R).
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Estimation of #, and v,, from Infusion Data

Table I. List of Symbols

c Drug concentration in the systemic circulation

CL Total-body clearance

D, Amount of drug that reaches the systemic circulation
during the interval 0 < 1 < T

f Rate of drug input (rate at which drug reaches the
systemic circulation)

R Rate of constant rate drug input

5§ Subscript denoting steady state, e.g., ¢, = systemic drug
concentration at steady state

t Elapsed time from the start of drug administration

T Any time after which drug input occurs at the constant
rate R

Ty Mean residence time

Vo Steady-state volume of distribution

X Amount of drug in the body

X, Cumulative amount of drug eliminated from the body

The amount of drug in the body at steady state is obtained by
taking the limit as ¢t — oo,

. R .
Xpss = lim xp(t) = o JO [css — c(]dr

>
© clt
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0 Css )
Combining Eq. (4) with the definition of the steady-state
volume of distribution,

Xbss R (. c(?)
= s — c(B)ldt = — 1 - d
Ol = = [ [ c]
)
It has previously been shown that 7, = x,,/R = v, /CL (1),
so that
- xbss o(9)
=== - 1-—id
Iy R CssJ [css — c(D)]dr = J l: Css]
(6

Similar equations have been presented previously for
the blood volume and mean transit time of an indicator in a
vascular bed (8). They had been derived for the case of a
vascular bed with a single inlet and a single outlet in which a
nonabsorbable chemical indicator is input at a constant rate
at the inlet and the indicator concentration is measured at the
outlet. In that setting blood flow, blood volume, and mean
transit time through the vascular bed play analogous roles to
CL, v, and 7.
Case 2: Continuous Constant-Rate Infusion Preceded by
Other Modes of Administration

For the case where a continuous constant rate infusion
is preceded by other modes of administration, e.g., an i.v.
bolus loading dose, the rate of drug input may be described
by

st=<T

where T is any time after which drug input occurs at the
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constant rate, R, and f is the time course of the input rate
prior to T. Proceeding as before, the mass balance relation-
ship for x;, now takes the form,

fo - CEC(I),O <t<T

ss

x40 = . ®)
R (1 - g“) » t>T

Integrating to obtain the amount of drug in the body,

[ jo’f(t)dt - =
jOTf(t)dt - —

c(t)
)

Let D denote the amount of drug that reaches the systemic
circulation (e.g., the absorbed dose) during the interval 0 <
t=<T, ie., D, = [Tf()d:. Also note that

L e(dydt, O0<s1<T
0

x () = d c(t)de
0

A

t>T

R
— (T c(e)dt = RT - RJ [1 _d )] (10)
Css JO Css
Substituting (10) into Eq. (9),
Jo’f(t)dt - — O’c(t)dt, Os:=<T
0= Dr—RT+R|'|1 <) dt t>T
g Jo des | ©
(11

The following equations for X, v.,, and %, resulting from
Eq. (11) are simple modifications of the equations derived
above for case 1.

R .
Xbss = lim xp(f) = Dy — RT + - J [ess — c(B)]dt

>
!
=DT—RT+RJ [1-66()} (12)
SS
Xbss — RT
Vss = CSS: = Cos _J [CSS = c(9))dr
Dr—RT R .. !
——Z————+—J[1—Q]d1 (13)
Css Css JO Css
7= Dbss Vs
TR L
Dy ~ RT
==t J [css — c(B)]dt
D7 — RT ()
it L 1 - 4
R Jo [ css] a4)
APPLICATION

The formulae derived above may be applied by fitting a
suitable equation to the concentration time course during an
infusion, e.g., an equation of the form,
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The resulting equation is then substituted into the appropri-
ate formulae. For the case when Eq. (15) describes the drug
concentrations, the equations for #, and v, become

i} " b
fy Eg

i=1

(16)
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n n 2
b >b (17)
Bi i=1 ’

i=1

Alternatively, a simple approach requiring less sophis-
ticated computational methods is to replace the integrals
with a suitable quadrature algorithm, e.g., trapezoidal rule; ¢
and c, in the integrands are replaced by experimentally de-
termined systemic drug concentrations. A procedure based
on such an approach is outlined below for a continuous con-
stant-rate infusion.

Estimation of c

(a) If the sampling period is sufficiently long that steady
state has been achieved, then ¢, may be estimated by aver-
aging the observed systemic drug concentrations during
steady state.

(b) Otherwise, fit an expression of the form,

c(®) = ¢, (1l — ae™™) (18)
to the terminal portion of the concentration data (region cor-
responding to the terminal monoexponential region of a bo-
lus response). Equation (18) can be shown to be appropriate
for any linear, time-invariant pharmacokinetic system that
exhibits a terminal monoexponential concentration time
course following a bolus input. In such cases a corresponds
to the terminal elimination rate constant and usually a < 1.

Identification of the region in which Eq. (18) holds is
somewhat more problematic than identification of the termi-
nal monoexponential region following truncated inputs. One
approach is to use a rate plot in the same manner as has been
used for analysis of urine data, i.e., plot In(Ac/Af) vs ¢. In
theory such a plot should exhibit a terminal linear region
such that the slope = —a and the y intercept = In(c aw).
Thus, the terminal region is identified visually and an initial
estimate of « may be obtained from the slope of the line. An
alternative approach is to fit Eq. (18) to the data and then
inspect for systematic deviations in the residuals. This may
be facilitated by the use of a sigma-minus plot—plot both the
observed and the calculated concentrations according to
In(c,; — ¢) vs ¢ {or equivalently, In[l1 — (c/c )] vs f—in
which such deviations would show as a calculated line that
deviates from the trend of the terminal portion of the data. If
systematic deviations are found, then one or more points are
excluded from the initial part of the data and the procedure
is repeated.
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Estimation of 7,

The integral may be partitioned into sampling and post-
sampling regions,

_ . c(f) © c(t
wh=1{|"|1— dr + 1 — —| dt 19
b fO |: C55:| fln ': Css ( )
where ¢, denotes the last sampling time.
(a) The integral over (0,t,) may be estimated by apply-
ing trapezoidal rule to the values of 1 — [¢(#,)/c,,], where ¢(t,)

denotes the experimental value at time ¢,. A somewhat more
convenient method results from the following identity:

c(t 1
ft,.l:l_ ()]dt:tn——
0 Css Css

Therefore, the integral over (0,£,) may be estimated by ap-
plying trapezoidal rule directly to the observed systemic
drug concentrations and substituting the result in Eq. (20),
ie.,

0’" c(n)dt (20)

: 1 1<
[ [ . ﬁ] dt =ty = =5 D [e) + el — 1)

i=1

21)

where 1, = 0.

(b) If steady state has been achieved by ¢,, then
Jo A1 = [e0e, )} dr = 0 and 4, is given by Eq. (21). Other-
wise, the integral over (¢,,) may be estimated by substitut-
ing Eq. (18) for ¢(¢) and integrating to yield

- c(t ae &
f [1 - Q] dt =
Ia Css a
1, is then estimated as the sum of the results of applying Eqgs.
(21) and (22).

(22)

ae—utn

. 1 1<

Iy == e i + ¢ i— i — li—

b In Ces 2 ;:l: [e(z) c(t l)](tz ti-q) + «
(23)

Estimation of v

Substitute previously determined values of c,, and 7,
into the following equation:

- R -
ves = (CL = — 1
ss

(24)

Several data sets were simulated by applying varying
amounts of normally distributed random error to values cal-
culated from the equations,

3
@
=R, j(] — e "),  Lv.infusion  (25)
=1
i.v. bolus

3
et) =D Y, g, (26)

i=1



Estimation of 7, and v, from Infusion Data

where R = 1 mg/hr, D = 25mg,a, = 0.0282 L', o, = 4.78
hr ' a, = 0.0156 L™ ', o, = 0.226 hr ', a; = 0.0061 L',
a3 = 0.021 hr . The sampling times were 0.5, 1, 2, 4, 6, 8,
12, 18, 24, 36, 48, 72, 96, 120, 144, 168, 192, 216, and 240 hr.
The “‘true”” values of 7, and v based on these equations are
t, = 38.7 hr and v, = 106 L. Both of the methods described
above were used to estimate #, and v, from the infusion
data. To evaluate the effect of the overall sampling duration,
the analyses were performed on subsets of the data formed
by progressively excluding the later data points.

An equation of the form of Eq. (15) with n = 2 was fit
to each infusion data set via weighted least-squares nonlin-
ear regression (9). The use of n > 2 resulted in no substantial
improvement in the fits. The squared residuals were
weighted by ¢ ~2. 7, and v, were then estimated according to
Egs. (16) and (17).

The values of ¢, a, and « were estimated by fitting
[weighted least-squares nonlinear regression (9)—weight =
¢7?] an equation of the form of Eq. (18) to the terminal
portion (¢t = 12 hr) of the ‘““observed’’ concentration data.
Equations (23) and (24) were applied to the infusion data to
estimate 7, and v,,.

1, and v, were estimated from the bolus data according
to , = AUMC/AUC and v,, = (D - AUMC)YAUC? (1).
AUC and AUMC are estimated by trapezoidal rule with ex-
trapolation to infinity, i.e., AUC = AUCW0— ¢,) + [é(t,)al]
and AUMC = AUMC(0—¢,) + [t, + (Vw)){é(e,)al, where
t,, is the last sampling time, é(z,,) is the calculated concentra-
tion at the last sampling time, and « is the terminal rate
constant. « is estimated by fitting a monoexponential equa-
tion, c(t) = ae™*, to the terminal monoexponential region
of the bolus data and é(¢,) = ae ™ *". Summary statistics of
the parameter estimates resulting from each of the methods
are shown in Tables 1I-IV.

Table II. Estimation of Mean Residence Time in the Body (;b) and
Volume of Distribution at Steady State (v,,) from Simulated Infusion
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Table III. Estimation of Mean Residence Time in the Body (Eb) and
Volume of Distribution at Steady State (v,,) from Simulated Infusion
Data Using Eqs. (23) and (24)

Sampling 1, (hr) v (L)
Error period
model” (hr) Mean SD Mean SD
o = 0.05¢ 144 42.5 945 111.6 17.5
168 40.8 7.81 109.1 15.4
192 39.6 5.96 107.0 12.4
216 39.9 5.19 107.8 11.0
240 39.5 439 107.0 9.72
o = 0.1c 144 575 273 131.1 442
168 49.8 272 120.6 444
192 42.8 16.8 111.1 324
216 4.3 147 110.6 29.4
240 40.5 11.3 107.4 249
o = 0.03692753c%9987 144 435 103  113.4 192
168 41.5 8.58 110.3 17.0
192 40.0 6.59 107.9 13.8
216 40.3 5.81 108.5 123
240 39.8 4.90 107.6 10.9

“ Each mean and standard deviation is based on 10 simulated data
sets.

# Standard deviation (o) of normally distributed error.

¢ This results in coefficients of variation of 5% when ¢ = ¢, and
10% when ¢ = 0.1cg,.

The results indicate that the proposed methods are
much less accurate and precise than the method used to
analyze the bolus data. Accuracy and precision are highly
dependent on the duration of sampling and the variability of
the data. In cases where variability is relatively high, toler-
able accuracy is obtained only if sampling is continued es-
sentially to steady state. From these results it is concluded

Table IV. Estimation of Mean Residence Time in the Body (Eb) and
Volume of Distribution at Steady State (v,,) from Simulated

Data Using Eqs. (16) and (17)¢ Bolus Data“
Sampling 7y (hr) Ve (L) Sampling 7, (hr) Vs (L)

Error period Error period
model® (hr) Mean SD Mean SD model? (hr) Mean SD Mean SD
o = 0.05¢ 144 39.1 7.15 105.5 13.1 a = 0.05¢ 144 388 0.691 1064 1.89
168 38.4 6.40 104.5 12.5 168 38.8  0.457 1063 1.55
192 37.9 5.35 103.7 109 192 38.8  0.391 106.2 1.49
216 38.3 4.52 1044 950 216 38.8  0.375 1063 1.38
240 38.3 3.87 1045 8.37 240 38.8 0.377 106.3 1.34
o= 0.1c 144 53.1 238 1263 36.4 o =0.1c 144 39.1  1.38 106.7 3.72
168 46.8 20.8 1182 354 168 389 0903 1063 3.08
192 424 147 1122 279 192 38.8  0.754 106.2 292
216 422 122 1122 240 216 38.9 0729 1063 2.73
240 41.3 9.78 1109 204 240 38.9 0.734 1063 2.64
o = 0.03692753c0-6987 144 39.4 7.60 106.0 13.9 o = 0.03692753¢06987 144 39.2  2.03 107.1  4.71
168 38.4 6.39 104.5 12.6 168 389 141 106.5 3.87
192 37.9 5.54 103.8 114 192 388 1.05 106.3  3.35
216 38.4 4.74 104.6 10.1 216 390 0924 106.6 2.90
240 384 4.17 1046  9.09 240 39.1 0.873 106.8 2.62

2 Each mean and standard deviation is based on 10 simulated data
sets.

¢ Standard deviation (o) of normally distributed error.

¢ This results in coefficients of variation of 5% when ¢ = ¢, and
10% when ¢ = 0.1cg,.

% Each mean and standard deviation is based on 10 simulated data
sets.

% Standard deviation (o) of normally distributed error.

¢ This results in coefficients of variation of 5% when ¢ = ¢, and
10% when ¢ = 0.1cq,.
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that the proposed methods should be reserved for those
cases where only infusion data are available.

DISCUSSION

The methods presented here for estimation of the mean
residence time and steady-state volume of distribution based
on systemic drug concentrations observed during a constant
rate infusion are potentially useful additions to existing
methods. However, they appear to be less accurate than
methods used to estimate 7, and v , from bolus or truncated
infusion data. Thus, the new methods are not recommended
as a substitute for the more accurate approaches, but they
are appropriate when only the results of a continuous infu-
sion are available.
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